

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

The chemistry of *N*-benzylidene-1,4-phenylenediamine palladacycles: The crystal and molecular structure of the first tetranuclear palladacycle with bridging Ph₂PCH₂PPh₂ ligands

Luis Adrio^a, José M. Antelo^a, Juan M. Ortigueira^a, Jesús J. Fernández^b, Alberto Fernández^b, M^a. Teresa Pereira^a, José M. Vila^{a,*}

^a Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain ^b Departamento de Química Fundamental, Facultad de Ciencias, Universidad de A Coruña, 15071 A Coruña, Spain

ARTICLE INFO

Article history: Received 28 October 2008 Received in revised form 2 December 2008 Accepted 3 December 2008 Available online 16 December 2008

Keywords: Palladium Cyclometallation Diphosphines Triphosphines Crystal structure Michael addition

ABSTRACT

The reaction of the tetranuclear halide-bridged complexes $1-2(\mathbf{a}-\mathbf{d})$ with Ph₂PCH₂PPh₂ (dppm) or Ph₂PC(=CH₂)PPh₂ (vdpp) in 1:2 molar ratio and NH₄PF₆ afforded the novel tetranuclear palladacycles **3**–**6** (**a**, **c**, **d**) as 1:2 electrolytes with bridging diphosphine and halogen ligands. The structure of **4a** has been determined by X-ray diffraction analysis, and represents the first example of a tetranuclear palladacycle with bridging dppm and halogen ligands. Reaction of $1-2(\mathbf{a}-\mathbf{d})$ with (Ph₂PCH₂CH₂)₂PPh (triphos) in 1:2 molar ratio gave **7**(**a**–**d**) bearing two pentacoordinated palladium atoms. The structure of **7a**, as determined by X-ray diffraction analysis, shows the distorted square pyramidal geometry around the metal centers. Treatment of $1-2(\mathbf{a}-\mathbf{d})$ with dppm, vdpp or Ph₂PN(Me)PPh₂ (dppma) in 1:4 molar ratio gave the dinuclear palladacycles **8**–**10**(**a**–**d**) with a chelating diphosphine ligand at each metal center; further treatment of **9**(**a**–**c**) with the nucleophiles pyrrolidine, piperidine, morpholine or 4-methyl-piperidine gave the Michael addition derivatives **11–12(a–c)**, **13b**, **13c** and **14c**, promoted by the with-drawing effect of the palladacycle which activates the C=CH₂ double bond.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The cyclometallation reaction has been profusely investigated in view of the rich chemistry it renders and is well documented for a great variety of metal centers and ligands [1]. The ensuing compounds are successfully used in organic synthesis [2], catalysis [3], photochemistry [4] and optical resolution process [5], and are rather promising as potential biologically active materials [6] and liquid crystals [7].

Multidentate ligands are particularly interesting due to their ability to induce new structural features or properties in the ensuing compounds; these ligands may be classified according to the number and type of atoms that are bonded to the metal, e.g., [C-E, C-E], [E-C-E], and [C-E-E], where E denotes a donor atom and C the metallated carbon atom. In the past we and others have dealt with cyclometallated compounds derived from multidentate ligands of the tridentate [C, N, X] (X = N [8], O [9], S [10]) and tetradentate [C-N, C-N] [11] types; phenolate Schiff base (X = O) and thiosemcarbazone (X = S) palladacycles display tetranuclear structures, with an eight-membered Pd₄X₄ core, with two pairs of parallel metallated units set mutually at *ca*. 90°. In the latter case, reaction with small

* Corresponding author. E-mail address: josemanuel.vila@usc.es (J.M. Vila). bite angle diphosphines yields the new cyclometallated bidentate P,S metaloligands [10f,12]. We have shown that tetradentate bis(N-benzylidene)-1,4-phenylenediamines give tetranuclear halide-bridged compounds [11a] as opposed to related complexes of polymeric nature [13]. Reaction of the latter with tertiary diphosphines gave either tetranuclear complexes, with 26 or 28-membered rings, or dinuclear species, with bridging [11c] and chelating phosphines [11d], respectively. However, analogous compounds with bridging short-bite diphosphines, such as Ph₂PCH₂PPh₂ (dppm) or Ph₂PC(=CH₂)PPh₂ (vdpp), bearing a sixmembered homodimetallic ring bridging the two organic ligands, were still outstanding, owing in part to the strong tendency towards chelation of the diphosphines, and these are the first reported examples. Furthermore, we also relate several aspects concerning the reactivity of the aforementioned tetranuclear complexes, e.g., to give species that may undergo Michael addition, as well as reactions with the tridentate phosphine ligand (Ph₂PCH₂CH₂)₂PPh, triphos.

2. Experimental

2.1. General comments

Solvents were purified by standard methods [14]. Chemicals were used as supplied from commercial sources. Elemental analy-

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.12.016

ses were carried out by the Unidade de Analise Elemental da Universidad de Santiago de Compostela using a Carlo-Erba elemental analyzer, Model 1108. IR spectra were recorded as Nujol mulls or polythene discs on Perkin–Elmer 1330, Mattson Model Cygnus-100 and Bruker Model IFS-66V spectrophotometers. NMR spectra were obtained as CDCl₃ or (CD₃)₂O solutions and referenced to SiMe₄, and were recorded on a Bruker AMX 300 spectrometer. All chemical shifts are reported downfield from standards. The FAB mass spectra were recorded with a Fisons Quatro mass spectrometer with a Cs ion gun; 3-nitrobenzyl alcohol was used as the matrix. Conductivity measurements were made on a WTW model LF3 conductivimeter using 10^{-4} M solutions in dry acetonitrile at room temperature (298 K).

2.2. Preparation of the tetranuclear complexes

The synthesis of the tetranuclear complexes, 1a-d, 2a-d, has been reported previously in papers from this laboratory [11a,c,d]. Their spectroscopic data are given for comparative purposes with the new compounds reported herein.

2.2.1. Compound 1a

IR (cm⁻¹): v(C=N): 1605m, v(Pd-Cl): 320m, 280m. ¹H NMR (CDCl₃, δ ppm, J Hz): 3.79 (s, 3H, MeO); 3.95 (s, 3H, MeO); 3.96 (s, 3H, MeO); 6.70 (s, 1H, H5); 7.21 (s, 2H, C₆H₄); 8.03 (s, 1H, HC=N).

2.2.2. Compound 2a

IR (cm⁻¹): ν (C=N): 1601m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 3.79 (s, 3H, MeO); 3.95 (s, 3H, MeO); 3.96 (s, 3H, MeO); 6.86 (s, 1H, H5); 7.20 (s, 2H, C₆H₄); 8.06 (s, 1H, HC=N).

2.2.3. Compound **1b**

IR (cm⁻¹): v(C=N): 1611m, v(Pd-Cl): 340m, 285m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 6.09 (s, 2H, OCH₂O); 6.94 (d, 1H, H3, ³*J*(H2H3) = 8.0); 7.42 (d, 1H, H2); 7.25 (s, 2H, C₆H₄); 7.34 (s, 1H, HC=N).

2.2.4. Compound **2b**

IR (cm⁻¹): v(C=N): 1610m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 6.08 (s, 2H, OCH₂O); 6.94 (s, 1H, H3, ³*J*(H2H3) = 7.9); 7.42 (s, 1H, H2); 7.25 (s, 2H, C₆H₄); 7.35 (s, 1H, HC=N).

2.2.5. Compound 1c

IR (cm⁻¹): v(C=N): 1596m, v(Pd-Cl): 333m, 274m. ¹H NMR (d_6 -DMSO, δ ppm, J Hz): 3.78 (s, 3H, MeO); 3.80 (s, 3H, MeO); 6.29 (d, 1H, H3, ³J(H3H5) = 2.0); 7.17 (d, 1H, H5, ³J(H3H5) = 2.0); 7.30 (s, 2H, C₆H₄); 8.22 (s, 1H, HC=N).

2.2.6. Compound 2c

IR (cm⁻¹): v(C=N): 1597m. ¹H NMR (d_6 -DMSO, δ ppm, J Hz): 3.78 (s, 3H, MeO); 3.80 (s, 3H, MeO); 6.27 (d, 1H, H3, ³J(H3H5) = 2.0); 6.96 (d, 1H, H5, ³J(H3H5) = 2.0); 7.29 (s, 2H, C₆H₄); 8.20 (s, 1H, HC=N).

2.2.7. Compound 1d

IR (cm⁻¹): v(C=N): 1599m, v(Pd-Cl): 331m, 255m. ¹H NMR (d_6 -DMSO, δ ppm, *J* Hz): 2.06 (s, 3H, Me); 3.78 (s, 3H, MeO); 7.33 (b, 4H, H2, H5, C₆H₄); 8.26(s, 1H, HC=N).

2.2.8. Compound 2d

IR (cm⁻¹): v(C=N): 1600m. ¹H NMR (d_6 -DMSO, δ ppm, J Hz): 2.07 (s, 3H, Me); 3.80 (s, 3H, MeO); 7.32 (b, 4H, H2, H5, C₆H₄); 8.24(s, 1H, HC=N).

2.3. Preparation of 3a

To a suspension of **1a** (50.0 mg, 0.034 mmol) in acetone (*ca.* 15 cm³), Ph₂PCH₂PPh₂ (25.8 mg, 0.067 mmol) was added. The mixture was stirred for 6 h at room temperature and then NH_4PF_6 (10.9 mg, 0.067 mmol) was added. The mixture was stirred for a further 6 h at room temperature, after which the solvent was removed under reduced pressure and the solid residue was chromatographed on a column packed with silica gel. Elution with a mixture of CH₂Cl₂:EtOH (97:3, v/v) afforded the final product, which after concentration, was recrystallized from chloroform/*n*-hexane to give a yellow solid.

Yield 56.5 mg 67%. Anal. Calc. for C₁₀₂H₉₆N₄Cl₂F₁₂O₁₂P₆Pd₄ (2480.28): C, 49.4, H, 3.9, N, 2.3. Found: C, 49.1, H, 3.8, N, 2.2%. IR (cm⁻¹): *v*(C=N): 1601m, *v*(Pd-Cl): 244m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 2.82(s, 3H, MeO); 3.69(s, 3H, MeO); 3.98 (s, 3H, MeO); 4.1 (d, 2H, PCH₂P); 5.51(d, 1H, H5, ⁴*J*(H5P) = 7.7); 7.47 (s, 2H, C₆H₄); 8.45 (d, 1H, HC=N, ⁴*J*(HP) = 6.8). ³¹P-{¹H} NMR: *δ* = 30.59s. Specific molar conductivity Λ_M = 226 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 2190 [M-2PF₆]⁺.

Compounds 3-6(a-d) were prepared similarly from 1-2(a-d) and dppm or vdpp, as appropriate.

2.3.1. Compound 4a

Yield 54.1 mg 71%. Anal. Calc. for $C_{102}H_{96}N_4Br_2F_{12}O_{12}P_6Pd_4$ (2569.18): C, 47.7, H, 3.8, N, 2.2. Found: C, 47.7, H, 3.6, N, 2.0%. IR (cm⁻¹): *v*(C=N): 1603m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 2.82(s, 3H, MeO); 3.70(s, 3H, MeO); 3.98 (s, 3H, MeO); 4.2 (d, 2H, PCH₂P); 5.51(d, 1H, H5, ⁴*J*(H5P) = 7.5); 7.47 (s, 2H, C₆H₄); 8.46 (d, 1H, HC=N, ⁴*J*(HP) = 6.9). ³¹P-{¹H} NMR: δ = 30.67s. Specific molar conductivity $A_M = 242 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 2279 [M-2PF₆]⁺.

2.3.2. Compound 5a

Yield 46.0 mg 54%. Anal. Calc. for C₁₀₄H₉₆N₄Cl₂F₁₂O₁₂P₆Pd₄ (2504.30): C, 49.9, H, 3.9, N, 2.2. Found: C, 49.4, H, 3.6, N, 2.1%. IR (cm⁻¹): *v*(C=N): 1602m, *v*(Pd-Cl): 262m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 2.77(s, 3H, MeO); 3.69(s, 3H, MeO); 4.00 (s, 3H, MeO); 6.03 (m, 2H, PC(=CH₂)P); 5.41(d, 1H, H5, ⁴*J*(H5P) = 7.7); 7.55 (s, 2H, C₆H₄); 8.55 (d, 1H, HC=N, ⁴*J*(HP) = 6.7). ³¹P-{¹H} NMR: δ = 44.93s. Specific molar conductivity Λ_M = 217 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m*/*z* 2214 [M-2PF₆]⁺.

2.3.3. Compound 6a

Yield 61.5 mg 79%. Anal. Calc. for $C_{104}H_{96}N_4Br_2F_{12}O_{12}P_6Pd_4$ (2593.21): C, 48.2, H, 3.7, N, 2.2. Found: C, 48.3, H, 3.6, N, 2.2%. IR (cm⁻¹): *v*(C=N): 1604m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 2.78(s, 3H, MeO); 3.70(s, 3H, MeO); 4.00 (s, 3H, MeO); 5,97 (m, 2H, PC(=CH₂)P); 5.40 (d, 1H, H5, ⁴*J*(H5P) = 7.1); 7.56 (s, 2H, C₆H₄); 8.56 (d, 1H, HC=N, ⁴*J*(HP) = 6.3). ³¹P-{¹H} NMR: *δ* = 41.80s. Specific molar conductivity Λ_M = 234 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 2303 [M-2PF₆]^{*}.

2.3.4. Compound **3c**

Yield 58.5 mg 67%. Anal. Calc. for C₉₈H₈₈N₄Cl₂F₁₂O₈P₆Pd₄ (2360.18): C, 49.9, H, 3.8, N, 2.4. Found: C, 49.5, H, 3.9, N, 2.0%. IR (cm⁻¹): *v*(C=N): 1601m, *v*(Pd-Cl): 242m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 3.08 (s, 3H, MeO); 3.82 (s, 3H, MeO); 4.1 (d, 2H, PCH₂P); 5.48 (dd, 1H, H5, ⁴*J*(H5P) = 9.7, ⁴*J*(H3H5) = 1.9); 6.17 (d, 1H, H3, ⁴*J*(H3H5) = 1.9); 7.65 (s, 2H, C₆H₄); 8.51 (d, 1H, HC=N, ⁴*J*(HP) = 7.1). ³¹P-{¹H} NMR: *δ* = 30.72 s. Specific molar conductivity $\Lambda_M = 209 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 2360 [M-2PF₆]⁺.

2.3.5. Compound **4c**

Yield 65.1 mg 83%. Anal. Calc. for $C_{98}H_{88}N_4Br_2F_{12}O_8P_6Pd_4$ (2449.08): C, 48.1, H, 3.6, N, 2.3. Found: C, 48.6, H, 3.6, N, 2.4%. IR (cm⁻¹): v(C=N): 1600m. ¹H NMR (d_6 -acetone, δ ppm, J Hz): 3.08

(s, 3H, MeO); 3.82 (s, 3H, MeO); 3.99 (d, 2H, PCH₂P); 5.47 (dd, 1H, H5, ${}^{4}J(H5P) = 9.6$, ${}^{4}J(H3H5) = 1.8$); 6.17 (d, 1H, H3, ${}^{4}J(H3H5) = 1.8$); 7.66 (s, 2H, C₆H₄); 8.50 (d, 1H, HC=N, ${}^{4}J(HP) = 6.9$). ${}^{31}P - {}^{1}H$ NMR: $\delta = 30.55s$. Specific molar conductivity $\Lambda_{M} = 229 \ \Omega^{-1} \ \text{cm}^{2} \ \text{mol}^{-1}$. FAB-MS: $m/z \ 2159 \ [\text{M} - 2\text{P}\text{F}_6]^{+}$.

2.3.6. Compound 5c

Yield 52.1 mg 59%. Anal. Calc. for C₁₀₀H₈₈N₄Cl₂F₁₂O₈P₆Pd₄ (2384.20): C, 50.4, H, 3.7, N, 2.4. Found: C, 50.8, H, 3.6, N, 2.0%. IR (cm⁻¹): *v*(C=N): 1600m, *v*(Pd-Cl): 240m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 2.91 (s, 3H, MeO); 3.78 (s, 3H, MeO); 5.27 (dd, 1H, H5, ⁴*J*(H5P) = 10.0, ⁴*J*(H3H5) = 1.7); 5.99 (m, 2H, PC(=CH₂)P); 6.00 (d, 1H, H3, ⁴*J*(H3H5) = 1.7); 8.60 (d, 1H, HC=N, ⁴*J*(HP) = 6.9). ³¹P-{¹H} NMR: *δ* = 44.96s. Specific molar conductivity Λ_M = 210 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 2094 [M-2PF₆]⁺.

2.3.7. Compound 6c

Yield 49.1 mg 62%. Anal. Calc. for $C_{100}H_{88}N_4Br_2F_{12}O_8P_6Pd_4$ (2473.10): C, 48.6, H, 3.6, N, 2.3. Found: C, 48.3, H, 3.6, N, 2.2%. IR (cm⁻¹): *v*(C=N): 1600m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 2.90 (s, 3H, MeO); 3.80 (s, 3H, MeO); 5.26 (dd, 1H, H5, ⁴*J*(H5P) = 9.9, ⁴*J*(H3H5) = 1.7); 6.00 (d, 1H, H3, ⁴*J*(H3H5) = 1.7); 6.04 (m, 2H, PC(=CH₂)P); 8.43 (d, 1H, *HC*=N, ⁴*J*(HP) = 6.7). ³¹P-{¹H} NMR: *δ* = 44.95s. Specific molar conductivity $\Lambda_M = 223 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 2183 [M-2PF₆]⁺.

2.3.8. Compound 3d

Yield 68.8 mg 79%. Anal. Calc. for C₉₈H₈₈N₄Cl₂F₁₂O₄P₆Pd₄ (2292.06): C, 51.2, H, 3.9, N, 2.4. Found: C, 51.3, H, 3.7, N, 2.6%. IR (cm⁻¹): ν (C=N): 1601m, ν (Pd-Cl): 268m. ¹H NMR (d_6 -acetone, δ ppm, *J* Hz): 1.95 (s, 3H, Me); 2.86 (s, 3H, MeO); 4.12 (d, 2H, PCH₂P); 5.84 (d, 1H, H5, ⁴*J*(H5P) = 7.4); 7.32 (s, 1H, H2); 7.71 (s, 2H, C₆H₄); 8.47 (d, 1H, HC=N, ⁴*J*(HP) = 7.0). ³¹P-{¹H} NMR: δ = 31.61s. Specific molar conductivity Λ_M = 224 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 2002 [M-2PF₆]⁺.

2.3.9. Compound 4d

Yield 68.9 mg 85%. Anal. Calc. for C₉₈H₈₈N₄Br₂F₁₂O₄P₆Pd₄ (2385.08): C, 49.4, H, 3.7, N, 2.4. Found: C, 49.3, H, 3.6, N, 2.1%. IR (cm⁻¹): *v*(C=N): 1599m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 1.96 (s, 3H, Me); 2.86 (s, 3H, MeO); 4.38 (d, 2H, PCH₂P); 5.83 (d, 1H, H5, ⁴*J*(H5P) = 7.4); 7.34 (s, 1H, H2); 7.68 (s, 2H, C₆H₄); 8.48 (d, 1H, *HC*=N, ⁴*J*(HP) = 6.6). ³¹P-{¹H} NMR: *δ* = 31.39s. Specific molar conductivity Λ_M = 236 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 2095 [M-2PF₆]⁺.

2.3.10. Compound **5d**

Yield 45.0 mg 51%. Anal. Calc. for C₁₀₀H₈₈N₄Cl₂F₁₂O₄P₆Pd₄ (2320.20): C, 51.8, H, 3.8, N, 2.4. Found: C, 51.4, H, 3.9, N, 2.4%. IR (cm⁻¹): *v*(C=N): 1602m, *v*(Pd-Cl): 249m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 1.98 (s, 3H, Me); 2.75 (s, 3H, MeO); 5.59 (d, 1H, H5, ⁴*J*(H5P) = 6.7); 5.87 (m, 2H, PC(=CH₂)P); 7.33 (s, 1H, H2); 7.52 (s, 2H, C₆H₄); 8.28 (d, 1H, *H*C=N, ⁴*J*(HP) = 6.0). ³¹P-{¹H} NMR: δ = 45.67s. Specific molar conductivity Λ_M = 220 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m/z* 2030 [M-2PF₆]⁺.

2.3.11. Compound **6d**

Yield 62.9 mg 77%. Anal. Calc. for C₁₀₀H₈₈N₄Br₂F₁₂O₄P₆Pd₄ (2403.10): C, 49.9, H, 3.7, N, 2.1. Found: C, 50.0, H, 3.5, N, 2.1%. IR (cm⁻¹): *v*(C=N): 1603m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 1.96 (s, 3H, Me); 2.74 (s, 3H, MeO); 5.57 (d, 1H, H5, ⁴*J*(H5P) = 6.6); 5.92 (m, 2H, PC(=CH₂)P); 7.34 (s, 1H, H2); 7.55 (s, 2H, C₆H₄); 8.31 (d, 1H, *HC*=N, ⁴*J*(HP) = 6.7). ³¹P-{¹H} NMR: *δ* = 46.00s. Specific molar conductivity Λ_M = 218 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 2113 [M-2PF₆]⁺.

2.4. Preparation of 7a

To a suspension of **1a** (50.1 mg, 0.030 mmol) in acetone (*ca*. 15 cm³), NH₄PF₆ (19.6 mg, 0.120 mmol) and Ph₂PCH₂CH₂PPhCH₂-CH₂PPh₂ (64.2 mg, 0.120 mmol) was added. The mixture was stirred for 12 h at room temperature, after which the solvent was removed under reduced pressure and the solid residue was chromatographed on a column packed with silica gel. Elution with a mixture of DCM:EtOH (97:3) afforded the final product as a yellow solid after concentration.

Yield 108.5 mg 89%. Anal. Calc. for $C_{94}H_{92}N_2F_{12}O_6P_8Pd_2$ (2032.27): C, 55.5, H, 4.6, N, 1.4. Found: C, 55.5, H, 4.7, N, 1.4%. IR (cm⁻¹): ν(C=N): 1593m. ¹H NMR (d_6 -acetone, δ ppm, J Hz): 3.23 (m, 2H, PCH₂); 3.39 (m, 2H, CH₂P); 3.69 (s, 3H, MeO); 3.86 (s, 3H, MeO); 4.03 (s, 3H, MeO); 5.48 (d, 1H, H5, ⁴J(H5P) = 8.6); 5.94 (s, 2H, C₆H₄); 6.89 (ddd, 2H, *o*-H in PPh, ³J(HP) = 9.4, ³J(HH) = 8.1, ⁴J(HH) = 1.9); 8.35 (s, 1H, HC=N). ³¹P-{¹H} NMR (d_6 -acetone, δ ppm, J Hz): 92.71 (t, 1P); 43.30 (d, 2P, J(PP) = 52.4). Specific molar conductivity $\Lambda_M = 290 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: m/z 1742 [M-2PF₆]⁺.

Compounds **7**(**b**–**d**) were prepared analogously.

2.4.1. Compound 7b

Yield 97.4 mg 76%. Anal. Calc. for C₉₀H₈₀N₂F₁₂O₄P₈Pd₂ (1942.22): C, 55.7, H, 4.2, N, 1.4. Found: C, 55.9, H, 4.0, N, 1.2%. IR (cm⁻¹): v(C=N): 1606m. ¹H NMR (d_6 -acetone, δ ppm, J Hz): 3.22 (m, 2H, PCH₂); 3.34 (m, 2H, CH₂P); 4.85 (s, 2H, OCH₂O); 6.54 (d, 1H, H3, ⁴J(H2H3) = 6.1); 6.35 (s, 2H, C₆H₄); 6.98 (ddd, 2H, o-H in PPh, ³J(HP) = 9.7, ³J(HH) = 8.0, ⁴J(HH) = 2.0); 8.26 (s, 1H, HC=N). ³¹P-{¹H} NMR (d_6 -acetone, δ ppm, J Hz): 89.11 (t, 1P); 42.00 (d, 2P, J(PP) = 47.1). Specific molar conductivity Λ_M = 299 Ω⁻¹ cm² mol⁻¹. FAB-MS: m/z 1652 [M-2PF₆]⁺.

2.4.2. Compound 7c

Yield 115.0 mg 91%. Anal. Calc. for $C_{92}H_{88}N_2F_{12}O_4P_8Pd_2$ (1974.31): C, 56.0, H, 4.5, N, 1.4. Found: C, 55.9, H, 4.5, N, 1.6%. IR (cm⁻¹): *v*(C=N): 1574s. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.89 (s, 3H, MeO); 3.21 (m, 2H, PC*H*₂); 3.37 (m, 2H, C*H*₂P); 3.93 (s, 3H, MeO); 5,29 (dd, 1H, H5, ⁴*J*(H5P) = 8.6, ⁴*J*(H3H5) = 1.9); 5,86 (s, 2H, C₆H₄); 6,07 (d, 2H, H3, ⁴*J*(H3H5) = 1.9); 6.88 (ddd, 2H, Ha, ³*J*(HP) = 9.6, ³*J*(HH) = 8.1, ⁴*J*(HH) = 1.9); 8.40 (s, 1H, *H*C=N). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 92.42 (t, 1P); 42.4 (d, 2P, *J*(PP) = 30.0). A_M = 278 Ω⁻¹ cm² mol⁻¹. Specific molar conductivity A_M = 278 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m/z* 1684 [M-2PF₆]⁺.

2.4.3. Compound 7d

Yield 96.3 mg 80%. Anal. Calc. for $C_{92}H_{88}N_2F_{12}O_2P_8Pd_2$ (1942.31): C, 56.9, H, 4.6, N, 1.4. Found: C, 57.0, H, 4.6, N, 1.4%. IR (cm⁻¹): *v*(C=N): 1591m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.05 (s, 3H, Me); 2.84 (s, 3H, MeO); 3.22 (m, 2H, PCH₂); 3.37 (m, 2H, CH₂P); 6.00 (s, 2H, C₆H₄); 6.64 (d, 1H, H5, ⁴*J*(H5P) = 10.4); 6.90 (ddd, 2H, Ha, ³*J*(HP) = 9.4, ³*J*(HH) = 8.1, ⁴*J*(HH) = 2.4); 8.10 (s, 1H, HC=N). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 89.10 (t, 1P); 42.56 (d, 2P, *J*(PP) = 45.2). Specific molar conductivity $A_M = 333 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. FAB-MS: *m/z* 1652 [M-2PF₆]⁺.

Compounds 8-10(a-d) were prepared similarly to 7a from 1a-d, 2a-d, and dppm, vdpp, or dppma, as appropriate.

2.4.4. Compound 8a

Yield 78.7 mg 84%. Anal. Calc. for $C_{76}H_{70}N_2F_{12}O_6P_6Pd_2$ (1734.04): C, 52.6, H, 4.1, N, 1.6. Found: C, 52.0, H, 4.3, N, 1.7%. IR (cm⁻¹): v(C=N): 1606m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 3.17 (s, 3H, MeO); 3.71 (s, 3H, MeO); 4.05 (s, 3H, MeO); 4.63 (dd, 2H, PCH₂P, ²*J*(HP) = 11.8, ²*J*(HP) = 8.4); 6.00 (dd, 1H, H5, ⁴*J*(H5P) = 10.6, ⁴*J*(H5P) = 7.8); 6.63 (s, 2H, C₆H₄); 8.27 (d, 1H, HC=N, ⁴*J*(HP) = 6.8). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -27.62 (d, J(PP) = 67.4; -4.51 (d, J(PP) = 67.4). $\Lambda_M = 278 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. Specific molar conductivity $\Lambda_M = 179 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: m/z 1444 [M-2PF₆]⁺.

2.4.5. Compound **8b**

Yield 76.3 mg 75%. Anal. Calc. for $C_{72}H_{58}N_2F_{12}O_4P_6Pd_2$ (1641.91): C, 52.7, H, 3.6, N, 1.7. Found: C, 52.5, H, 3.7, N, 1.6%. IR (cm⁻¹): v(C=N): 1606m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 4.51 (dd, 2H, PCH₂P, ²*J*(HP) = 11.4, ²*J*(HP) = 8.7); 5.22 (s, 1H, OCHO); 5.28 (s, 1H, OCHO); 6.72 (d, 1H, H3, ³*J*(H2H3) = 7.0); 6.95 (s, 2H, C₆H₄); 8.27 (d, 1H, HC=N, ⁴*J*(HP) = 7.0). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -37.51 (d, *J*(PP) = 72.8); -13.63 (d, *J*(PP) = 72.8). Specific molar conductivity $\Lambda_M = 259 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 1352 [M-2PF₆]⁺.

2.4.6. Compound 8c

Yield 60.5 mg 67%. Anal. Calc. for $C_{74}H_{66}N_2F_{12}O_4P_6Pd_2$ (1672.13): C, 53.1, H, 4.0, N, 1.7. Found: C, 53.0, H, 3.9, N, 1.5%. IR (cm⁻¹): *v*(C=N): 1605w. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 3.37 (s, 3H, MeO); 3.94 (s, 3H, MeO); 4.59 (dd, 2H, PCH₂P, ²*J*(HP) = 11.7, ²*J*(HP) = 8.4); 5.87 (ddd, 1H, H5, ⁴*J*(H5P) = 9.8, ⁴*J*(H5P) = 7.6, ⁴*J*(H3H5) = 1.5); 6.32 (d, 1H, H3, ⁴*J*(H3H5) = 1.5); 6.90 (s, 2H, C₆H₄); 8.38 (d, 1H, HC=N, ⁴*J*(HP) = 6.9). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -27.87 (d, *J*(PP) = 64.2); -4.49 (d, *J*(PP) = 64.2). $\Lambda_M = 182 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. Specific molar conductivity $\Lambda_M = 278 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. FAB-MS: *m/z* 1382 [M-2PF₆]⁺.

2.4.7. Compound 8d

Yield 76.1 mg 80%. Anal. Calc. for $C_{74}H_{66}N_2F_{12}O_2P_6Pd_2$ (1640.14): C, 54.1, H, 4.1, N, 1.7. Found: C, 54.0, H, 4.0, N, 1.9%. IR (cm⁻¹): *v*(C=N): 1600m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.02 (s, 3H, Me); 3.20 (s, 3H, MeO); 4.62 (dd, 2H, PCH₂P, ²*J*(HP) = 11.7, ²*J*(HP) = 8.4); 6.34 (dd, 1H, H5, ⁴*J*(H5P) = 11.3, ⁴*J*(H5P) = 7.1); 6.94 (s, 2H, C₆H₄); 8.26 (d, 1H, HC=N, ⁴*J*(HP) = 6.4). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): -28.77 (d, *J*(PP) = 56.4); -10.41 (d, *J*(PP) = 56.4). Λ_M = 278 Ω^{-1} cm² mol⁻¹. Specific molar conductivity Λ_M = 181 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 1350 [M-2PF₆]⁺.

2.4.8. Compound 9a

Yield 53.2 mg 56%. Anal. Calc. for $C_{78}H_{70}N_2F_{12}O_6P_6Pd_2$ (1758.06): C, 53.3, H, 4.0, N, 1.6. Found: C, 53.0, H, 3.9, N, 1.8%. IR (cm⁻¹): *v*(C=N): 1601m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 3.09 (s, 3H, MeO); 3.74 (s, 3H, MeO); 3.97 (s, 3H, MeO); 5.81 (dd, 1H, H5, ⁴*J*(H5P) = 10.1, ⁴*J*(H5P) = 8.1); 6.60 (m, 2H, PC(=CH₂)P); 6.86 (s, 2H, C₆H₄); 8.32 (d, 1H, *HC*=N, ⁴*J*(HP) = 7.7). ³¹P-{¹H} NMR (CDCl₃, *δ* ppm, *J* Hz): -12.66 (d, *J*(PP) = 17.5); 8.47 (d, *J*(PP) = 17.5). $\Lambda_M = 278 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. Specific molar conductivity $\Lambda_M = 198 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. FAB-MS: *m/z* 1468 [M-2PF₆]⁺.

2.4.9. Compound 9b

Yield 69.2 mg 67%. Anal. Calc. for $C_{74}H_{58}N_2F_{12}O_4P_6Pd_2$ (1665.93): C, 53.4, H, 3.5, N, 1.7. Found: C, 53.4, H, 3.3, N, 1.6%. IR (cm⁻¹): ν(C=N): 1607m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 5.26 (s, 1H, OCHO); 5.28 (s, 1H, OCHO); 5.73 (d, 1H, H3, ³*J*(H3H5) = 7.0); 6.85 (m, 2H, PC(=CH₂)P); 6.81 (s, 2H, C₆H₄); 8.22 (d, 1H, HC=N, ⁴*J*(HP) = 7.1). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -17.33 (t, *J*(PP) = 65.7); 2.78 (d, *J*(PP) = 16.7). Λ_M = 278 Ω^{-1} cm² mol⁻¹. Specific molar conductivity Λ_M = 235 Ω^{-1} cm² mol⁻¹. FAB-MS: *m*/*z* 1376 [M-2PF₆]⁺.

2.4.10. Compound 9c

Yield 75.2 mg 82%. Anal. Calc. for $C_{76}H_{66}N_2F_{12}O_4P_6Pd_2$ (1698.01): C, 53.8, H, 3.9, N, 1.7. Found: C, 54.0, H, 3.5, N, 1.4%. IR (cm⁻¹): v(C=N): 1598w. ¹H NMR (d_6 -acetone, δ ppm, J Hz): 3.41 (s, 3H, MeO); 3.95 (s, 3H, MeO); 5.87 (ddd, 1H, H5, ⁴J(H5P) = 9.5, ⁴J(H5P) = 7.5, ⁴J(H3H5) = 2.0); 6.34 (d, 1H, H3, ⁴J(H3H5) = 2.0); 6.49 (m, 2H, PC(=CH₂)P); 6.88 (s, 2H, C₆H₄); 8.23 (d, 1H, HC=N, ⁴J(HP) = 7.1). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): -5.06 (d, *J*(PP) = 14.0); 11.03 (d, *J*(PP) = 14.0). Specific molar conductivity $\Lambda_M = 204 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 1408 [M-2PF₆]⁺.

2.4.11. Compound 9d

Yield 81.2 mg 84%. Anal. Calc. for C₇₆H₆₆N₂F₁₂O₂P₆Pd₂ (1666.01): C, 54.8, H, 4.0, N, 1.7. Found: C, 55.2, H, 4.1, N, 1.7%. IR (cm⁻¹): v(C=N): 1606w. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 2.04 (s, 3H, Me); 3.19 (s, 3H, MeO); 6.32 (dd, 1H, H5, ⁴*J*(H5P) = 9.9, ⁴*J*(H5P) = 7.4); 6.56 (m, 2H, PC(=CH₂)P); 6.88 (s, 2H, C₆H₄); 8.24 (d, 1H, HC=N, ⁴*J*(HP) = 6.9). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -3.03 (d, *J*(PP) = 15.1); 13.81 (d, *J*(PP) = 15.1). Λ_M = 278 Ω⁻¹ cm² mol⁻¹. Specific molar conductivity Λ_M = 199 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m*/*z* 1376 [M-2PF₆]⁺.

2.4.12. Compound 10a

Yield 94.2 mg 89%. Anal. Calc. for $C_{76}H_{72}N_4F_{12}O_6P_6Pd_2$ (1764.07): C, 51.7, H, 4.1, N, 3.2. Found: C, 51.5, H, 4.0, N, 3.3%. IR (cm⁻¹): *v*(C=N): 1586m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 2.67 (dd, 3H, PN(*Me*)P, ³*J*(HP) = 10.3, ³*J*(HP) = 9.1); 3.49 (s, 3H, MeO); 3.71 (s, 3H, MeO); 4.00 (s, 3H, MeO); 6.28 (dd, 1H, H5, ⁴*J*(H5P) = 10.9, ⁴*J*(H5P) = 7.0); 7.06 (s, 2H, C₆H₄); 8.31 (d, 1H, HC=N, ⁴*J*(HP) = 7.1). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): 48.8 (d, *J*(PP) = 58.7); 58.1 (d, *J*(PP) = 58.7). A_M = 278 Ω^{-1} cm² mol⁻¹. Specific molar conductivity A_M = 287 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 1474 [M–2PF₆]⁺.

2.4.13. Compound 10b

Yield 82.3 mg 82%. Anal. Calc. for $C_{72}H_{60}N_4F_{12}O_4P_6Pd_2$ (1671.93): C, 51.7, H, 3.6, N, 3.4. Found: C, 51.9, H, 3.6, N, 3.5%. IR (cm⁻¹): *v*(C=N): 1605m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.77 (dd, 3H, PN(*Me*)P, ³*J*(HP) = 9.6, ³*J*(HP) = 6.2); 5.56 (s, 2H, OCH₂O); 6.71 (d, 1H, H3, ⁴*J*(H2H3) = 7.8); 7.05 (s, 2H, C₆H₄); 8.32 (d, 1H, *HC*=N, ⁴*J*(HP) = 7.2). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 44.8 (d, *J*(PP) = 54.0); 54.6 (d, *J*(PP) = 54.0). Λ_M = 278 Ω⁻¹ cm² mol⁻¹. Specific molar conductivity Λ_M = 262 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m*/ *z* 1382 [M-2PF₆]⁺.

2.4.14. Compound 10c

Yield 89.9 mg 91%. Anal. Calc. for $C_{74}H_{68}N_4F_{12}O_4P_6Pd_2$ (1704.02): C, 52.2, H, 4.0, N, 3.3. Found: C, 51.9, H, 4.2, N, 3.4%. IR (cm⁻¹): *v*(C=N): 1599w. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.64 (dd, 3H, PN(*Me*)P, ³*J*(HP) = 10.2, ³*J*(HP) = 8.1); 3.60 (s, 3H, MeO); 3.92 (s, 3H, MeO); 6.28 (ddd, 1H, H5, ⁴*J*(H5P) = 10.6, ⁴*J*(H5P) = 8.2, ⁴*J*(H3H5) = 2.0); 6.33 (d, 1H, H3, ⁴*J*(H3H5) = 2.0) 7.01 (s, 2H, C₆H₄); 8.30 (dd, 1H, HC=N, ⁴*J*(HP) = 7.1, ⁴*J*(HP) = 1.2). ³¹P-{¹H} NMR (*d*₆-acetone ₃, *δ* ppm, *J* Hz): 49.0 (d, *J*(PP) = 58.7); 58.2 (d, *J*(PP) = 58.7). A_M = 278 Ω⁻¹ cm² mol⁻¹. Specific molar conductivity A_M = 247 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m/z* 1414 [M-2PF₆]⁺.

2.4.15. Compound 10d

Yield 90.0 mg 88%. Anal. Calc. for $C_{74}H_{68}N_4F_{12}O_2P_6Pd_2$ (1672.02): C, 53.2, H, 4.1, N, 3.2. Found: C, 52.9, H, 4.1, N, 3.2%. IR (cm⁻¹): *v*(C=N): 1587m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.03 (s, 3H, Me); 2.68 (dd, 3H, PN(*Me*)P, ³*J*(HP) = 10.1, ³*J*(HP) = 9.1); 3.46 (s, 3H, MeO); 6.47 (dd, 1H, H5, ⁴*J*(H5P) = 10.8, ⁴*J*(H5P) = 8.2); 8.30 (d, 1H, *HC*=N, ⁴*J*(HP) = 7.1). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 49.5 (d, *J*(PP) = 58.9); 59.1 (d, *J*(PP) = 58.9). $\Lambda_M = 278 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. Specific molar conductivity $\Lambda_M = 283 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. FAB-MS: *m/z* 1382 [M-2PF₆]⁺.

2.5. Preparation of **11a**

To a suspension of **9a** (40.0 mg, 0.023 mmol) in oxygen-free benzene (*ca.* 15 cm^3), pyrrolidine (3.88 mg, 0.054 mmol) was added. The mixture was stirred for 24 h under argon at room tem-

perature, after which the solvent was removed under reduced pressure and the solid residue was chromatographed on a column packed with silica gel. Elution with a mixture of DCM:EtOH (98:2) afforded the final product as a yellow solid after concentration.

Yield 26.7 mg 61%. Anal. Calc. for C₈₆H₈₈N₄F₁₂O₆P₆Pd₂ (1900.31): C, 54.4, H, 4.7, N, 3.0. Found: C, 54.2, H, 4.5, N, 2.8%. IR (cm⁻¹): v(C=N): 1599m. ¹H NMR (d_6 -acetone, δ ppm, J Hz): 3.10 (s, 3H, MeO); 3.67 (s, 3H, MeO); 3.95 (s, 3H, MeO); 4.84 (m, 1H, PCHP); 5.91 (dd, 1H, H5, ⁴J(H5P) = 10.4, ⁴J(H5P) = 8.1); 6.30 (d, 1H, C₆H₄, ³J(HH) = 8.4); 6.92 (d, 1H, C₆H₄, ³J(HH) = 8.4); 8.36 (dd, 1H, HC=N, ⁴J(HP) = 7.4, ⁴J(HP) = 1.0). ³¹P-{¹H} NMR (d_6 -acetone, δ ppm, J Hz): -7.37 (d, J(PP) = 57.3); 7.45 (d, J(PP) = 57.3). Specific molar conductivity Λ_M = 235 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m/z* 1610 [M-2PF₆]⁺.

Compounds **11b**, **11c**, **12a**–**c**, **13b**, **13c**, and **14c** were prepared similarly from 8-10(a-d), and pyrrolidine, piperidine, morpholine or 4-Me-piperidine, as appropriate.

2.5.1. Compound 11b

Yield 17.5 mg 51%. Anal. Calc. for $C_{82}H_{76}N_4F_{12}O_4P_6Pd_2$ (1928.33): C, 54.5, H, 4.2, N, 3.1. Found: C, 54.7, H, 4.0, N, 3.0%. IR (cm⁻¹): *v*(C=N): 1607m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 4.81 (m, 1H, PCHP); 4.86 (s, 1H, OCHO); 5.13 (s, 1H, OCHO); 6.60 (d, 1H, H3, ⁴*J*(H2H3) = 7.4); 6.21 (d, 1H, C_6H_4 , ³*J*(HH) = 7.8); 6.76 (d, 1H, C_6H_4 , ³*J*(HH) = 7.8); 8.03 (d, 1H, *HC*=N, ⁴*J*(HP) = 6.8). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -14.6 (d, *J*(PP) = 58.2); 6.21 (d, *J*(PP) = 58.2). Specific molar conductivity $\Lambda_M = 251 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 1638 [M-2PF₆]⁺.

2.5.2. Compound 11c

Yield 16.7 mg 77%. Anal. Calc. for $C_{84}H_{84}N_4F_{12}O_4P_6Pd_2$ (1840.28): C, 54.8, H, 4.6, N, 3.0. Found: C, 54.7, H, 4.8, N, 3.1%. IR (cm⁻¹): *v*(C=N): 1604m,sh. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 3.35 (s, 3H, MeO); 3.94 (s, 3H, MeO); 5.03 (m, 1H, PCHP); 5.80 (ddd, 1H, H5, ⁴*J*(H5P) = 10.7, ⁴*J*(H5P) = 7.4, ⁴*J*(H3H5) = 1.7); 6.28 (d, 1H, H3, ⁴*J*(H3H5) = 1.7); 6.35 (s, 1H, C₆H₄); 6.78 (s, 1H, C₆H₄); 8.24 (d, 1H, HC=N, ⁴*J*(HP) = 7.7). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): -13.4 (d, *J*(PP) = 55.4); 7.19 (d, *J*(PP) = 55.4). Specific molar conductivity $\Lambda_M = 247 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. FAB-MS: *m/z* 1550 [M-2PF₆]⁺.

2.5.3. Compound 12a

Yield 17.4 mg 67%. Anal. Calc. for $C_{88}H_{92}N_4F_{12}O_6P_6Pd_2$ (1928.33): C, 54.8, H, 4.8, N, 2.9. Found: C, 54.5, H, 4.6, N, 3.0%. IR (cm⁻¹): *v*(C=N): 1601m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 3.11 (s, 3H, MeO); 3.68 (s, 3H, MeO); 3.95 (s, 3H, MeO); 4.89 (m, 1H, PCHP); 5.91 (dd, 1H, H5, ⁴*J*(H5P) = 12.1, ⁴*J*(H5P) = 8.9); 6.30 (d, 1H, C_6H_4 , ³*J*(HH) = 9.5); 6.92 (d, 1H, C_6H_4 , ³*J*(HH) = 9.5); 8.36 (dd, 1H, *HC*=N, ⁴*J*(HP) = 7.7, ⁴*J*(HP) = 0.4). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.01 (d, *J*(PP) = 46.9); 17.64 (d, *J*(PP) = 46.9). Specific molar conductivity $\Lambda_M = 259 \Omega^{-1} cm^2 mol^{-1}$. FAB-MS: *m/z* 1638 [M-2PF₆]⁺.

2.5.4. Compound 12b

Yield 19.5 mg 56%. Anal. Calc. for C₈₄H₈₀N₄F₁₂O₄P₆Pd₂ (1836.22): C, 54.9, H, 4.4, N, 3.1. Found: C, 55.1, H, 4.1, N, 2.8%. IR (cm⁻¹): *v*(C=N): 1603m. ¹H NMR (CDCl₃, *δ* ppm, *J* Hz): 4.69 (m, 1H, PCHP); 4.87 (s, 1H, OCHO); 5.13 (s, 1H, OCHO); 6.58 (d, 1H, H3, ⁴*J*(H2H3) = 8.4); 6.22 (d, 1H, C₆H₄, ³*J*(HH) = 8.7); 6.76 (d, 1H, C₆H₄, ³*J*(HH) = 8.7); 8.03 (d, 1H, *H*C=N, ⁴*J*(HP) = 6.7). ³¹P-{¹H} NMR (CDCl₃, *δ* ppm, *J* Hz): -16.8 (d, *J*(PP) = 67.5); 3.22 (d, *J*(PP) = 67.5). Specific molar conductivity Λ_M = 223 Ω⁻¹ cm² mol⁻¹. FAB-MS: *m/z* 1546 [M-2PF₆]⁺.

2.5.5. Compound 12c

Yield 22.7 mg 81%. Anal. Calc. for $C_{86}H_{88}N_4F_{12}O_4P_6Pd_2$ (1868.31): C, 55.3, H, 4.8, N, 3.0. Found: C, 55.0, H, 4.6, N, 2.8%. IR

(cm⁻¹): *v*(C=N): 1607m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 3.35 (s, 3H, MeO); 3.96 (s, 3H, MeO); 5.04 (m, 1H, PCHP); 5.79 (ddd, 1H, H5, ⁴*J*(H5P) = 8.7, ⁴*J*(H5P) = 7.7, ⁴*J*(H3H5) = 2.0); 6.30 (d, 1H, H3, ⁴*J*(H3H5) = 2.0); 6.77 (s, 1H, C₆H₄); 6.78 (s, 1H, C₆H₄); 8.24 (dd, 1H, *H*C=N, ⁴*J*(HP) = 7.0, ⁴*J*(HP) = 1.0). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): -19.83 (d, *J*(PP) = 60.5), 6,00 (d, *J*(PP) = 60.5). Specific molar conductivity $\Lambda_M = 261 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. FAB-MS: *m*/*z* 1578 [M-2PF₆]⁺.

2.5.6. Compound 13b

Yield 21.3 mg 61%. Anal. Calc. for $C_{s2}H_{76}N_4F_{12}O_6P_6Pd_2$ (1840.17): C, 53.5, H, 4.2, N, 3.1. Found: C, 53.3, H, 4.2, N, 3.3%. IR (cm⁻¹): *v*(C=N): 1600m. ¹H NMR (CDCl₃, δ ppm, *J* Hz): 4.65 (m, 1H, PCHP); 4.86 (s, 1H, OCHO); 5.15 (s, 1H, OCHO); 6.59 (d, 1H, H3, ⁴*J*(H2H3) = 6.4); 6.23 (d, 1H, C_6H_4 , ³*J*(HH) = 8.4); 6.77 (d, 1H, C_6H_4 , ³*J*(HH) = 8.4); 8.03 (d, 1H, *HC*=N, ⁴*J*(HP) = 6.4). ³¹P-{¹H} NMR (CDCl₃, δ ppm, *J* Hz): -6.4 (d, *J*(PP) = 62.2); 13.26 (d, *J*(PP) = 62.2). Specific molar conductivity Λ_M = 248 Ω^{-1} cm² mol⁻¹. FAB-MS: *m/z* 1550 [M-2PF₆]⁺.

2.5.7. Compound 13c

Yield 26.1 mg 58%. Anal. Calc. for $C_{84}H_{84}N_4F_{12}O_6P_6Pd_2$ (1872.25): C, 53.9, H, 4.5, N, 3.0. Found: C, 53.5, H, 4.3, N, 2.9%. IR (cm⁻¹): *v*(C=N): 1599m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 3.34 (s, 3H, MeO); 3.95 (s, 3H, MeO); 4.97 (m, 1H, PCHP); 5.79 (ddd, 1H, H5, ⁴*J*(H5P) = 10.7, ⁴*J*(H5P) = 7.4, ⁴*J*(H3H5) = 2.0); 6.29 (d, 1H, H3, ⁴*J*(H3H5) = 2.0); 6.77 (s, 1H, C₆*H*₄); 6.78 (s, 1H, C₆*H*₄); 8.24 (dd, 1H, *H*C=N, ⁴*J*(HP) = 6.9, ⁴*J*(HP) = 1.2). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): -15.8 (d, *J*(PP) = 56.4); 8.33 (d, *J*(PP) = 56.4). Specific molar conductivity $\Lambda_M = 245 \Omega^{-1} cm^2 mol^{-1}$. FAB-MS: *m*/ *z* 1582 [M-2PF₆]⁺.

2.5.8. Compound 14c

Yield 35.0 mg 88%. Anal. Calc. for $C_{88}H_{91}N_4F_{12}O_4P_6Pd_2$ (1896.34): C, 55.7, H, 4.9, N, 3.0. Found: C, 55.4, H, 4.7, N, 2.7%. IR (cm⁻¹): *v*(C=N): 1606m. ¹H NMR (*d*₆-acetone, *δ* ppm, *J* Hz): 2.54 (s, 3H, NMe); 3.34 (s, 3H, MeO); 3.94 (s, 3H, MeO); 4.95 (m, 1H, PCHP); 5.79 (ddd, 1H, H5, ⁴*J*(H5P) = 9.8, ⁴*J*(H5P) = 8.1, ⁴*J*(H3H5) = 1.3); 6.29 (d, 1H, H3, ⁴*J*(H3H5) = 1.3); 6.79 (s, 1H, C₆H₄); 6.80 (s, 1H, C₆H₄); 8.13 (dd, 1H, *H*C=N, ⁴*J*(HP) = 6.7, ⁴*J*(HP) = 1.1). ³¹P-{¹H} NMR (*d*₆-acetone, *δ* ppm, *J* Hz): -13.68 (d, *J*(PP) = 47.7), 7.03 (d, *J*(PP) = 47.7). Specific molar conductivity $A_M = 221 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. FAB-MS: *m/z* 1606 [M-2PF₆]⁺.

2.6. Crystal structure

For **4a** and **7a** room temperature X-ray data were collected on a BRUKER SMART-CCD-1000 diffractometer using monochromated Mo k α radiation by the omega method. All the measured reflections were corrected for Lorentz and polarization effects and for absorption by semiempirical methods (sADABS) based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined by full matrix least-squares on F^2 . Hydrogen atoms were included in calculated positions and refined in riding mode. Refinement converged at a final R = 0.0545 and $wR_2 = 0.1281$ (**4a**), R = 0.0662 and $wR_2 = 0.1772$ (**7a**) (all unique data, F^2), with allowance for thermal anisotropy of all non-hydrogen atoms. The structure solutions and refinements were carried out with the SHELX-97 program package [15].

3. Results and discussion

For the convenience of the reader the compounds and reactions are shown in Scheme 1. Preparative details, characterising microanalytical data, mass spectra, conductivity measurements, IR and

Scheme 1. (i) $Ph_2CH_2PPh_2$ or $Ph_2C(=CH_2)PPh_2$ (1:2)/ NH_4PF_6 in acetone. (ii) ($Ph_2PCH_2CH_2)_2PPh$ (1:2)/ NH_4PF_6 in acetone. (iii) $Ph_2CH_2PPh_2$, $Ph_2C(=CH_2)PPh_2$ or $Ph_2N(Me)PPh_2$ (1:4)/ NH_4PF_6 in acetone. (iv) Pyrrolidine, piperidine, morpholine or 4-Me-piperidine (1:2) in benzene.

NMR data are in the Section 2. The ligands $\mathbf{a}-\mathbf{d}$ and the starting materials, $\mathbf{1}-\mathbf{2}(\mathbf{a}-\mathbf{d})$, have been described by us earlier [11a,c,d].

The reaction of 1-2(a-d) with Ph₂PCH₂PPh₂ (dppm) or Ph₂PC(=CH₂)PPh₂ (vdpp) in 1:2 molar ratio followed by treatment with ammonium hexafluorophosphate gave 3-6 (a, c, d) as pure air-stable solids, which were fully characterised (Section 2). We were not able to obtain pure the **b** derivatives. The complexes show two non-symmetrical bridges between two palladium atoms: a tertiary short-bite diphosphine and a halogen atom, thus generating a hexanuclear CXP₂Pd₂ ring that binds together the two tetradentate Schiff base moieties, and rendering the hitherto unknown tetranuclear palladacycles. The compounds were 1:2 electrolytes as shown by molar conductivity measurements in dry acetonitrile [16]. The mass spectrum (FAB) showed the m/z peaks whose isotopic composition was consistent with the proposed tetranuclear complexes. Only one set of signals in the ¹H NMR spectra and one singlet in the ³¹P NMR spectra was observed; these findings put forward the equivalence of the four metallated moieties. of the two phenylene rings and of the four phosphorus atoms, in highly symmetrical structures. The ³¹P chemical shifts are consistent with a phosphorus trans to nitrogen arrangement, with the diphosphine on the "outer" side of the CXP₂Pd₂ ring [11c]. This was confirmed by the strong upfield shift of he 4-MeO group promoted by shielding of the phosphine phenyl rings. An apparent doublet ca. 4 ppm in the ¹H NMR spectra was assigned to the PCH₂P protons of the AA'XX' spin system, whereas a multiplet ca.6 ppm was assigned to the vinylidne protons of the vdpp phos-

Table 1 Crustal data and structure refinement.

Crystal	data	and	structure	refinement	data	for	4

Empirical formula Formula weight Temperature (K) Wavelength (Å) Crystal system Space group	C ₁₀₄ H ₁₀₀ Br ₂ Cl ₄ F ₁₂ N ₄ O ₁₂ P ₆ Pd ₄ 2738.92 293(2) 0.71073 Orthorhombic <i>C</i> 2 <i>cb</i>
Unit cell dimensions	
a (Å)	15.0980(10)
b (Å)	28.6010(10)
c (Å)	29.4890(10)
Volume (Å ³)	12733.9(10)
Ζ	4
D_{calc} (Mg/m ³)	1.429
Absorption coefficient (mm ⁻¹)	1.412
F(000)	5472
Crystal size (mm ³)	$0.35\times0.35\times0.25$
θ Range for data collection (°)	2.51-26.28
Index ranges	$-18\leqslant h\leqslant 0,-35\leqslant k\leqslant 0,0\leqslant l\leqslant 36$
Reflections collected	6952
Independent reflections	6700 $[R_{int} = 0.0516]$
Completeness to θ = 26.28° (%)	99.9
Absorption correction	Semi-empirical from equivalents
Maximum and minimum transmission	0.703 and 0.616
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	6700/1/674
Goodness-of-fit on F ²	0.915
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0545, wR_2 = 0.1281$
R indices (all data)	$R_1 = 0.1219, wR_2 = 0.1428$
Absolute structure parameter	0.006(19)
Largest difference in peak and hole (e $Å^{-3}$)	1.001 and -1.544

phine. The HC=N and H5 proton resonances were doublets by coupling to the phosphorus atom.

3.1. Crystal structure of complex 4a

Crystals of **4a** were obtained by slow evaporation from a dichloromethane solution, space group *C2cb*, with one centrosymmetric tetrametalic complex dication, two hexafluorophosphate anions and two dichloromethane solvent molecules (half of the dication, one hexafluorophosphate anion and one dicholormethane molecule per asymmetric unit). Crystal data are shown in Table 1 and the ORTEP view of the structure is depicted in Fig. 1. The result from the X-ray crystallographic study on **4a** confirms the NMR-derived structure.

Fig. 1 reveals that in the highly symmetric molecule each fourcoordinate palladium atom is bonded to four different atoms: the aromatic carbon and nitrogen atoms from the tetradentate organic ligand, a phosphorus atom from the diphosphine, and a bromine atom which bridges the two metal centers. Each palladium atom belongs to two six and five-membered rings: the *C*,*N*-chelate metallacycle and the dimetallic bridging moiety. The angles between adjoining atoms in the coordination sphere of each metal atom are close to the theoretical value of 90°; with the most noteworthy strains in the C–Pd–N values, *ca.* 82°, consequent upon chelation. The sum of angles on each palladium is *ca.* 360°. The Pd–C [2.045(8)–2.050(9) Å] and Pd–P [2.242(3)–2.248(3) Å] bond distances are somewhat shorter than the theoretical values of 2.081 Å and 2.43 Å [17]; however, the Pd–N [Pd(1)–N(1), 2.120(8); Pd(2)–N(2), 2.096(8)] and Pd–Br [Pd(1)–Br(1), 2.573(1); Pd(2)–Br(1), 2.572(1)] bond lengths are longer than expected, 2.01 Å and 2.45 Å [17], respectively, evidencing the *trans* influence of the phosphine ligand and phenyl carbon [*cf.* with the Pd–N lengths *ca.* 2.05 Å [11a], in the absence of phosphine]. The palladium coordination planes at Pd(1) and Pd(2) are essentially planar, with rms values of 0.1650 and 0.2075, respectively, from which the palladium atoms deviate by 0.009(2) Å and 0.034(2) Å, also respectively.

As opposed to the nearly planar structure bearing only bridging bromine atoms [11a], herein the need to accommodate both the bromine atom and the greater spanning diphosphine ligand between the two metal centers induces noticeable distortions in the structure, mainly manifested in partial loss of planarity. Thus, the two nearly planar fused phenyl and metallacycle rings [C(1)– C(7), N(1), Pd(1) rms 0.0460; C(39)–C(45), N(2), Pd(2) rms 0.0648] with angle between planes of 16.47°, are at 65.11° and 48.00° with the corresponding phenylene ring, and at 79.74° and 73.27° with the phosphine P(1)–C(14)–P(2) plane; the phenylene rings are not parallel but mutually twisted to 72.43°. Moreover, the molecule shows a Pd(1)···Pd(2) distance of 4.154(2) Å, far greater than those previously reported in related palladacycles

Fig. 1. Molecular structure of **4a** with solvent, counterions, hydrogen atoms and phosphine phenyl rings have been omitted for clarity. Thermal ellipsoids are shown at 30% probability. The asymmetric unit is half molecule and the symmetry transformation used to generate equivalent atoms[#] is (x, -y, -z). Selected bond lengths and angles: Pd(1)–C(1), 2.045(8); Pd(1)–N(1), 2.120(8); Pd(1)–P(1) 2.248(3); Pd(1)–Br(1), 2.573(1); N(1)–C(7), 1.257(13); Pd(2)–C(39), 2.050(9); Pd(2)–N(2), 2.096(8); Pd(2)–P(2), 2.242(3); Pd(2)–Br(1), 2.572(1); N(2)–C(45), 1.277(13) Å; Pd(1)···Pd(2), 4.154(2); C(1)–Pd(1)–N(1), 81.4(4); C(1)–Pd(1)–P(1), 94.2(3); N(1)–Pd(1)–Br(1), 94.4(2); P(1)–Pd(1)–Br(1), 91.06(8); C(39)–Pd(2)–N(2), 81.6(4); C(39)–Pd(2)–P(2), 94.7(3); N(2)–Pd(2)–Br(1), 93.7(2); P(2)–Pd(2)–Br(1), 92.05(8)°; N(1)–Pd(1)–P(1) 173.0(3); C(1)–Pd(1)–Br(1), 165.0(4).

Table 2					
Crystal data	and structure	refinement	data	for 7	7a

Empirical formula	$C_{94}H_{92}F_{12}N_2O_6P_8Pd_2$
Formula weight	2031.74
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	
a (Å)	18.042(4)
b (Å)	15.047(3)
c (Å)	19.082(4)
β(°)	105.67(3)
Volume (Å ³)	4987.8(18)
Ζ	2
$D_{\text{calc}} (\text{Mg/m}^3)$	1.353
Absorption coefficient (mm ⁻¹)	0.561
F(000)	2071
Crystal size (mm ³)	$0.45 \times 0.34 \times 0.23$
θ Range for data collection (°)	3.49-29.13
Index ranges	$0 \leqslant h \leqslant 22, 0 \leqslant k \leqslant 20, -24 \leqslant l \leqslant 22$
Reflections collected	11902
Independent reflections	8312 [<i>R</i> _{int} = 0.0662]
Completeness to θ = 29.13°	88.7%
Absorption correction	Semi-empirical from equivalents
Maximum and minimum transmission	0.8818 and 0.7864
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	11902/1/563
Goodness-of-fit on F ²	1.055
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0662, wR_2 = 0.1772$
R indices (all data)	$R_1 = 0.0968, wR_2 = 0.2021$
Extinction coefficient	0.0107(9)
Largest difference in peak and hole (e $Å^{-3}$)	0.878 and -0.650

[11a]. The Cremer and Pople puckering parameters [18] are in accordance with a *twist–boat* conformation [Q = 1.468 Å, $\theta = 91.3^{\circ}(2)$, $\varphi = 149.6(4)$] for the six-membered CBrP₂Pd₂ ring.

The reaction of 1-2(a-d) with $(Ph_2PCH_2CH_2)_2PPh$ (triphos) followed by treatment with ammonium hexafluorophosphate gave the novel dinuclear palladacylces as pure air-stable solids, which were fully characterized (see Section 2); conductivity measurements show values in agreement with 1:2 elctrolytes [16]. There is

only one previous example of a doubly five-coordinate palladated compound, reported by us [19], with both metal atoms bonded to the same phenyl ring, as opposed to the present case where each palladium atom is linked to a different aromatic ring. The shift of the v(C=N) stretching vibration to lower wavenumbers [20] as well as the upfield shift of the HC=N proton resonance in the ¹H NMR spectra [21] indicates the existence of palladium-nitrogen interaction in solution, although coupling of the latter to the phosphorus nuclei was not detected; the HC=N resonance appeared as a singlet. The phosphorus resonances in the ³¹P-{¹H} NMR spectra of the complexes were downfield shifted from their values in the free phosphine suggesting coordination of all the phosphorus atoms to the metal center. A triplet *ca*. 90 ppm was assigned to the central ³¹P nucleus, trans to the phenyl carbon atom, and a doublet signal at ca. 42 ppm was assigned to the two equivalent mutually trans phosphorus nuclei. The latter signal appeared at lower frequency in accordance with the high *trans* influence of the phosphine ligand [22].

3.2. Crystal structure of complex 7a

Crystals of **7a** were obtained by slow evaporation from a chloroform solution, space group $P2_1/c$, with one centrosymmetric dimetalic complex dication and two hexafluorophosphate anions (half of the dication and one hexafluorophosphate anion per asymmetric unit). Crystal data are shown in Table 2 and the ORTEP view of the structure is depicted in Fig. 2.

The structure reveals that in the symmetric molecule each palladium atom is five-coordinate and bonded to three phosphorus atoms from the tridentate phosphine ligand, and to the aromatic carbon and nitrogen atoms from the tetradentate organic ligand. The geometrical parameter τ , *i.e.*, $\tau = (\beta - \alpha)/60$, where β and α are C(5)–Pd(1)–P(2) and P(3)–Pd(1)–P(1) bond angles, respectively, has a value of 0.4. This suggests a square pyramidal geometry with a 40% distortion towards trigonal bypyramid [23]. The axial position may be considered to be occupied by N(1) with C(5), P(1), P(2) and P(3) making up the basal plane (rms 0.2399), and with a palladium atom deviation from this plane of 0.5222(5) Å. As for the Pd–N bond length we have shown [19] that distortion of the

Fig. 2. Molecular structure of **7a** with counterions, hydrogen atoms and phosphine phenyl rings omitted for clarity. Thermal ellipsoids are shown at 30% probability. The asymmetric unit is half molecule and the symmetry transformation used to generate equivalent atoms[#] is (-x + 1, -y, -z + 1). Selected bond lengths and angles: Pd(1)–C(5), 2.049(4); Pd(1)–P(2), 2.271(1); Pd(1)–P(3), 2.2887(14); Pd(1)–P(1), 2.327(1); Pd(1)–N(1), 2.444(4); P(1)–C(1), 1.855(5); P(2)–C(2), 1.811(6); P(2)–C(3), 1.814(5); P(3)–C(4), 1.855(5); N(1)–C(11), 1.276(6); N(1)–C(12), 1.421(5); C(5)–Pd(1)–P(2), 174.98(13); C(5)–Pd(1)–P(3), 94.70(12); P(2)–Pd(1)–P(3), 85.51(5); C(5)–Pd(1)–P(1), 91.73(13); P(2)–Pd(1)–P(1), 85.68(5); P(3)–Pd(1)–P(1), 150.34(5); C(5)–Pd(1)–N(1), 75.88(15); P(2)–Pd(1)–N(1), 108.55(9); P(3)–Pd(1)–N(1), 115.69(10); P(1)–Pd(1)–N(1), 93.96(10).

palladium geometry towards square-base pyramidal results in lengthening of the bond, *i.e.*, longer bonds correspond to lower τ values. Therefore, the Pd(1)–N(1) distance of 2.444(4) Å fits well within the values found by us in related complexes and although longer than single bond value of 2.01 Å [17], is close to the Pd–N bond length of 2.23(2) Å in an authentic pentacoordinated palladium(II) complex [24]. Nevertheless, the distance reported herein is shorter than those found in other Pd(II) five-coordinate complexes where weak Pd···N interactions were found and given in the range 2.576(4)–2.805(5) Å [25]. The Pd(1)–C(5) bond length of 2.049(4) Å, and the Pd–P bond lengths 2.271(1)–2.327(1) Å, are shorter than the expected values of 2.081 Å, and 2.41 Å [17], respectively, suggesting some degree of multiple bond character in the Pd–C_{aryl} [26,27] and Pd–P linkages [28].

The two nearly planar fused metallated phenyl ring and metalacycle ring moiety [C(5)–C(11), N(1), Pd(1) rms 0.0460] is at 53.77° with the phenylene ring. The stacking parameters [29] are appropriate enough to consider that effective π – π stacking interaction is operative. Thus, the centroid–centroid distance between the planes defined by the phosphine phenyl ring [C(30)–C(35)], plane 1, and the phenylene ring, plane 2, is d_{c-c} = 3.830(4) Å, with α = 14.94°; the slipping angles β and γ (defined by the vector c_1 – c_2 and the normal to plane 1 or plane 2 from c_2 and c_1 , respectively) are 23.91° and 32.78°, with $d(_{\perp}c_1$ –plane 2) 3.281 Å and $d(_{\perp}c_2$ –plane 1) 3.501 Å (see Figs. 3 and 4).

The reaction of 1-2(a-d) with Ph₂PCH₂PPh₂, Ph₂PC(=CH₂)PPh₂ or Ph₂PN(Me)PPh₂ (dppma) in 1:4 molar ratio followed by treatment with ammonium hexafluorophosphate gave the dinuclear palladacycles 8-10(a-d) as pure air-stable 1:2 electrolytes, which were fully characterized (see Section 2). The ³¹P NMR spectra showed two doublets for the two inequivalent phosphorus nuclei. The resonance at lower frequency was assigned to the phosphorus nucleus trans to the phenyl carbon atom, in agreement with the higher trans influence of the latter with respect to the nitrogen atom [22]. A doublet of doublets ca. 4.5 and 2.3 pm, in the ¹H NMR spectra, was assigned to the PCH₂P (**8a**-**8d**) and PN(Me)P (10a-10d) protons, respectively, whereas the PC(=CH₂)P resonance was a multiplet in all cases. The H5 resonance showed coupling to both phosphorus nuclei (⁴JP_{trans-N}H5 ca. 10 Hz, ⁴JP_{cis-N}H5 ca. 8 Hz), and the HC=N nucleus was only coupled to the phosphorus trans to nitrogen (⁴/PH ca. 7 Hz).

Treatment of **9a**–**9c** with pyrrolidine, piperidine, morpholine or 4-Me-piperidine in 1:2 molar ratio gave the Michael addition prod-

Fig. 4. The molecular structure of **7a** showing the π -stacking of he phenyl rings.

ucts 11–12(a–c), 13b, 13c and 14c in good yield, as pure air-stable 1:2 electrolytes, which were fully characterized (see Section 4). The palladacycle activates the C=CH₂ double bond towards nucleophilic addition producing, in turn, a relief of strain in the P-C-P carbon atom of the four-membered PdP₂C ring after addition, due to angle modification at carbon on going from sp^2 to sp^3 hybridization. Addition was sustained based on the absence of the $PC(=CH_2)P$ proton resonance and the appearance of the PCHP resonance ca. 4.5–5.0 ppm. The ³¹P NMR spectra showed two doublets for the two inequivalent phosphorus nuclei; the $\Delta \delta P$ difference with respect to the starting materials **9a-9c** was the same in the **b** series, slightly lower in the **a** compounds, and larger by *ca*. 5-10 pm in the **c** derivatives. Although the P–C–P carbon atom in **9a**–**9c** shows sp² hybridization, as opposed to sp³ hybridization in the addition materials (implying loss of the hybrid s character), the ${}^{2}I(PP)$ value in the latter species was higher than in the starting materials (cf. 45–60 and 14–18 Hz, respectively). We suggest this is due to a greater contribution of ${}^{2}I(PP)$ across the metal center (usually of negative sign) in the addition products, thus lowering the absolute value of the coupling constant. The H5 resonance was a doublet (⁴/P_{trans-N}H5 ca. 10–12 Hz, ⁴/P_{cis-N}H5 ca. 8 Hz); in some complexes the HC=N nucleus showed coupling to both phosphorus nuclei (⁴JP_{trans-N}H 6.7–7.7 Hz, ⁴JP_{cis-N}H5 0.4-1.2 Hz). In contrast to the starting materials, two resonances were observed for the phenylenene protons, which were not equivalent in this case.

Fig. 3. Intramolecular π,π-stacking interactions. Dashed lines link the centroids of the rings involved in each stacking interaction. Hydrogen atoms and counterions have been for omitted for clarity.

4. Conclusions

We have shown that the chemistry of the *N*-benzylidene-1.4phenylenediamine metallacycles can be further extended to enclose tetranuclear palladium complexes with bridging short-bite tertiary diphosphines, which deviate to a certain extent from full planarity in order to accommodate the phosphine bridging ligand consequent on the shorter span of the halogen atom; definite proof of which is the molecular structure given herein. Insight into other aspects of their chemistry stems from the preparation of the novel dinuclear five-coordinate palladacycles, for which the molecular structure shows there is intramolecular π -stacking, and from the Michael addition products that may be obtained in the case of the dinuclear species with the chelated diphosphine, vdpp.

5. Supplementary material

CCDC 697274 and 697275 contain the supplementary crystallographic data for compounds **4a** and **7a**, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

We thank the Ministerio de Educación y Ciencia (Project CTQ2006-15621-C02-01/BQU) for financial support. L.A. and J.M.A. acknowledge fellowships from the Xunta de Galicia (Spain).

References

- [1] (a) E.C. Constable, Polyhedron 3 (1984) 1037;
 - (b) I. Omae, Organometallic intramolecular-coordination compounds, in: Journal of Organometallic Chemistry Library, Elsevier, Amsterdam, 1986;
 - (c) V.V. Dunina, O.A. Zalewskaya, V. Potapov, Russ. Chem. Rev. 57 (1988) 250;
 - (d) P. Steenwinkel, R.A. Gossage, G. van Koten, Chem. Eur. J. 4 (1998) 759;
 - (e) M. Pfeffer, Recl. Trav. Chim. Pays-Bas 109 (1990) 567;
 - (f) J. Dupont, M. Pfeffer, J. Spencer, Eur. J. Inorg. Chem. (2001) 1917;
 - (g) V.V. Dunina, O.N. Gorunova, Russ. Chem. Rev. 73 (2004) 309;
 - (h) V.V. Dunina, O.N. Gorunova, Russ. Chem. Rev. 74 (2005) 871;
 - (i) F. Mohr, S.H. Priver, S.K. Bhargava, M.A. Bennett, Coord. Chem. Rev. 250 (2006) 1851.
- [2] (a) J. Spencer, M. Pfeffer, Adv. Met. Org. Chem. 3 (1994) 103;
- (b) I. Omae, Applications of Organometallic Compounds, Wiley & Sons, Chichester, 1998.
- [3] (a) I. Omae, Coord. Chem. Rev. 248 (2004) 995;
 - (b) J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527;
 - (c) R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283;
 - (d) M. Weck, C.W. Jones, Inorg. Chem. 46 (2007) 1865;
 - (e) R. Johansson, O.L. Wendt, Dalton Trans. (2007) 488;
 - (f) I. Omae, J. Organomet. Chem. 692 (2007) 2608.
- [4] (a) A. von Zelewski, P. Belser, P. Hayos, R. Dux, X. Hua, A. Suckling, H. Stoeckli-Evans, Coord. Chem. Rev. 132 (1994) 75;
- (b) B. Ma, P.I. Djurovich, M.E. Thompson, Coord. Chem. Rev. 249 (2005) 1501; (c) M. Ghedini, I. Aiello, A. Crispini, A. Golemme, M. La Deda, D. Pucci, Coord. Chem. Rev. 250 (2006) 1373;
 - (d) M.S. Lowry, S. Bernhard, Chem. Eur. J. 12 (2006) 7970;
- (e) L.-L. Wu, C.-H. Yang, I-W. Sun, S.-Y. Chu, P.-C. Kao, H.-H. Huang, Organometallics 26 (2007) 2017;
- (f) S.C.F. Kui, I.H.T. Sham, C.C.C. Cheung, C.-W. Ma, B. Pan, N. Zhu, C.M. Che, W.-F. Fu, Chem. Eur. J. 3 (2007) 417.
- [5] (a) S.B. Wild, Coord. Chem. Rev. 166 (1997) 291;
- (b) W.A. Herrmann, C. Brossmer, K. Ökefe, C.P. Reisinger, T. Priermeier, M. Beller, H. Fischer, Angew. Chem., Int. Ed. Engl. 34 (1995) 1844;
 - (c) S.P. Flanagan, R. Goddard, P.J. Guiry, Tetrahedron 61 (2005) 9808;
- (d) L. Tang, Y. Zhang, L. Ding, Y. Li, K.-F. Mok, W.-C. Yeo, P.-H. Leung, Tetrahedron Lett. 48 (2007) 33.
- [6] (a) C. Navarro-Ranninger, I. López-Solera, V.M. González, J.M. Pérez, A. Alvarez-Valdés, A. Martín, P.R. Raithby, J.R. Masaguer, C. Alonso, Inorg. Chem. 35 (1996) 5181;
 - (b) T. Okada, I.M. El-Mehasseb, M. Kodaka, T. Tomohiro, K. Okamoto, H. Okuno, J. Med. Chem. 44 (2001) 4661;
 - (c) A. Gómez-Quiroga, C. Navarro-Ranninger, Coord. Chem. Rev. 248 (2004) 119;

- (d) J. Ruiz, J. Lorenzo, L. Sanglas, N. Cutillas, C. Vicente, M.D. Villa, F.X. Avilés, G. López, V. Moreno, J. Pérez, D. Bautista, Inorg. Chem. 45 (2006) 6347
- [7] (a) M. Marcos, in: J.L. Serrano (Ed.), Metallomesogens. Synthesis, Properties and Applications, VCH, Weinheim, 1996;
 - (b) D. Pucci, G. Barneiro, A. Bellusci, A. Crispini, M. Ghedini, J. Organomet. Chem. 691 (2006) 1138.
- [8] (a) J.M. Vila, M. Gayoso, M.T. Pereira, M. López-Torres, J.J. Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 532 (1997) 171; (b) J.M. Vila, M.T. Pereira, J.M. Ortigueira, D. Lata, M. López-Torres, J.J. Fernández, A. Fernández, .H. Adams, J. Organomet. Chem. 566 (1998) 93; (c) A. Fernández, J.J. Fernández, M. López-Torres, A. Suárez, J.M. Ortigueira, J.M. Vila, H. Adams, J. Organomet. Chem. 612 (2000) 85; (d) A. Fernández, P. Uría, J.J. Fernández, M. López-Torres, A. Suárez, D.
- Vázquez-García, M. T Pereira, J.M. Vila, J. Organomet. Chem. 620 (2001) 8. [9] (a) A. Fernández, D. Vázquez-García, J.J. Fernández, M. López-Torres, A. Suárez,
- S. Castro-Juiz, J.M. Vila, New. J. Chem. 26 (2002) 105; (b) C. López, A. Caubet, S. Pérez, X. Soláns, M. Font-Bardía, J. Organomet. Chem.
 - 681 (2003) 82;
 - (c) J.J. Fernández, A. Fernández, D. Vázquez-García, M. López-Torres, A. Suárez, I.M. Vila, Polyhedron 26 (2007) 4567;
 - (d) J.J. Fernández, A. Fernández, D. Vázquez-García, M. López-Torres, A. Suárez, N. Gómez-Blanco, J.M. Vila, Eur. J. Inorg. Chem. (2007) 5408.
- [10] (a) C. Navarro-Ranninger, I. López-Solera, J.M. Pérez, J.H. Rodríguez, J.L. García-Ruano, P.R. Raithby, J.R. Masaguer, C. Alonso, J. Med. Chem. 36 (1993) 3795; (b) J.M. Vila, M.T. Pereira, A. Fernández, M. López-Torres, H. Adams, J. Chem. Soc., Dalton Trans. (1999) 4193;
 - (c) D. Vázquez-García, A. Fernández, J.J. Fernández, M. López-Torres, A. Suárez,
 - J.M. Ortigueira, J.M. Vila, H. Adams, J. Organomet. Chem. 595 (2000) 199;
 - (d) A. Amoedo, M. Graña, J. Martínez, T. Pereira, M. López-Torres, A. Fernández, J.J. Fernández, J.M. Vila, Eur. J. Inorg. Chem. (2002) 613;
 - (e) A. Amoedo, L. Adrio, J. M Antelo, J. Martínez, M.T. Pereira, A. Fernández, J.M. Vila, Eur. J. Inorg. Chem. (2006) 3016;
- (f) J. Martínez, L.A. Adrio, J.M. Antelo, J.M. Ortigueira, M.T. Pereira, J.J. Fernández, A. Fernández, J.M. Vila, J. Organomet. Chem. 691 (2006) 2721.
- [11] (a) J.M. Vila, M. Gayoso, M.T. Pereira, M.C. Rodriguez, J.M. Ortigueira, M. Thornton-Pett, J. Organomet. Chem. 426 (1992) 267;
 - (b) J.M. Vila, M. Gayoso, M.T. Pereira, M. López-Torres, J.J. Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 445 (1993) 287;
 - (c) J.M. Vila, M. Gayoso, M.T. Pereira, M.C. Rodriguez, J.M. Ortigueira, J.J. Fernández, M. López-Torres, J. Organomet. Chem. 479 (1994) 37;
 (d) J.M. Vila, M. Gayoso, M. López-Torres, J.J. Fernández, A. Fernández, J.M.
 - Ortigueira, N.A. Bailey, H. Adams, J. Organomet. Chem. 511 (1996) 129.
- [12] J. Martínez, M.T. Pereira, I. Buceta, G. Alberdi, A. Amoedo, J.J. Fernández, M. López-Torres, J.M. Vila, Organometallics 22 (2003) 5581.
- [13] (a) J. Granell, J. Sales, J. Vilarrasa, J.P. Declerg, G. Germain, C. Miravitlles, X. Soláns, J. Chem. Soc., Dalton Trans. (1983) 2441;
 - (b) R.M. Ceder, J. Sales, J. Organomet. Chem. 294 (1985) 389;
 - (c) R.M. Ceder, J. Sales, X. Solans, M. Font-Altaba, J. Chem. Soc., Dalton Trans. (1986) 1351.
- [14] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, fourth ed., Butterworth Heinemann, London, 1996.
- G.M. Sheldrick, SHELX-97, An Integrated System for Solving and Refining Crystal [15] Structures from Diffraction Data, University of Göttingen, Germany, 1997.
- [16] W. Geary, Coord. Chem. Rev. 7 (1971) 81. [17] L. Pauling, The Nature of the Chemical Bond, third ed., Cornell University Press,
- Ithaca, New York, 1960.
- [18] D. Cremer, J.A. Pople, J. Am. Chem. Soc. 97 (1975) 1354.
- [19] M. López-Torres, A. Fernández, J.J. Fernández, A. Suárez, M.T. Pereira, J.M. Ortigueira, J.M. Vila, H. Adams, Inorg. Chem. 40 (2001) 4583.
- [20] M. Onoue, I. Moritani, J. Organomet. Chem. 43 (1972) 431.
- [21] Y. Ustynyuk, V.A. Chertov, J.V. Barinov, J. Organomet. Chem. 29 (1971) C53.
 [22] P.S. Pregosin, R.W. Kuntz, ³¹P and¹³C NMR of transition metal phosphine complexes, in: P. Diehl, E. Fluck, R. Kosfeld (Eds.), NMR 16, Springer, Berlin, 1979
- [23] A.W. Addisom, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc., Dalton. Trans. (1984) 1349.
- [24] F. Cecconi, C.A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini, J.C.S.G. Scapacci, Dalton Trans. (1989) 211.
- [25] (a) J. Vicente, A. Arcas, D. Bautista, P.G. Jones, Organometallics 16 (1997) 2127; (b) L.A. Villanueva, K. Abboud, J.M. Boncella, Organometallics 10 (1991) 2969; (c) D. Onggo, D.C. Craig, A.D. Rae, H.A. Goodwin, Aust. J. Chem. 44 (1991) 219; (d) O. Schlager, K. Wieghardt, B. Nuber, Inorg. Chem. 34 (1995) 6449; (e) J. Albert, M. Gómez, J. Granell, J. Sales, Organometallics 9 (1990) 1405.
- [26] J. Selbin, K. Abboud, S.F. Watkins, M.A. Gutiérrez, F.R. Fronczek, J. Organomet.
- Chem. 241 (1983) 259. C. Navarro-Ranninger, I. López-Solera, .A. Alvarez-Valdés, J.H. Rodríguez-[27]
- Ramos, J.R. Masaguer, J.L. García-Ruano, Organometallics 12 (1993) 4104 [28] A. Suárez, J.M. Vila, E. Gayoso, M. Gayoso, W. Hiller, A. Castiñeiras, J. Strähle, Z. Anorg. Allg. Chem. 535 (1986) 213.
- [29] A.L. Spek, PLATON: A Multipurpose Crystallographic Tool, University of Utrecht, The Netherlands, 2001.